ADAPTED LINEAR APPROXIMATION FOR LOGARITHMIC KERNEL INTEGRALS

MOSTEFA NADIR

ABSTRACT. In this work we present an approximation for singular integrals with logarithmic kernel on a smooth oriented contour, for this latter we use a small modification of the linear spline functions in order to eliminate the weak singularity. Noting that this approximation is destined to solve numerically the integral equations with weakly singular kernel on a smooth oriented contour.

Introduction

As we know Fredholm integral equations of the second kind appear in many applications among those transport theory, potential theory, elasticity and crack mechanics. All those areas of mathematical physics contain a problems lead to the equation of the form

\[\varphi(t_0) + \frac{1}{\pi i} \int_{\Gamma} k(t, t_0) \varphi(t) dt = f(t_0), \]

for a given function \(f(t_0) \) and a given singular kernel \(k(t, t_0) \) of the type

\[k(t, t_0) = h(t, t_0) \ln(t - t_0), \]

where \(h(t, t_0) \) is non singular function and under \(\Gamma \) we designate an oriented smooth contour, the points \(t \) and \(t_0 \) are on \(\Gamma \).

Our problem describe a new approximation of singular integral with logarithmic kernel

\[F(t_0) = \frac{1}{\pi i} \int_{\Gamma} \varphi(t) \ln(t - t_0) dt, \quad t, t_0 \in \Gamma. \]

Noting that, this integral can be derived when we use the single layer potential for a boundary element method of Laplace equation with the Dirichlet boundary data. for the existence of the principal value of this integral for a given density \(\varphi(t) \), we will need more than mere

2000 Mathematics Subject Classification. Primary 45D05, 45E05, 45L05; Secondary 65R20.

Key words and phrases. Singular integral, interpolation, weakly singular kernel.
continuity. In other words, the density $\varphi(t)$ has to satisfy the Holder condition $H(\mu)[1 - 2 - 3]$.

The function $\varphi(t)$ will be said to satisfy a Holder condition on Γ, if for any two points t_1 and t_2 of Γ

$$|\varphi(t_2) - \varphi(t_1)| \leq A |t_2 - t_1|^\mu, \quad 0 < \mu \leq 1,$$

where A is a positive constant, called the Holder constant and μ the Holder index.

The Quadrature

We denote by t the parametric complex function $t(s)$ of the curve Γ defined by

$$t(s) = x(s) + iy(s), \quad a \leq s \leq b,$$

where $x(s)$ and $y(s)$ are continuous functions on the finite interval of definition $[a, b]$ and have continuous first derivatives $x'(s)$ and $y'(s)$ never simultaneously null. Let N be an arbitrary natural number, generally we take it large enough and divide the interval $[a, b]$ into N equal subintervals $I_1, I_2, ..., I_N$ by the points

$$s_\sigma = a + \sigma \frac{l}{N}, \quad l = b - a, \quad \sigma = 0, 1, 2, ..., N.$$

Assuming that, for the indices $\sigma, \nu = 0, 1, 2, ..., N - 1$, the points t and t_0 belong respectively to the arcs $t_\sigma t_{\sigma + 1}$ and $t_\nu t_{\nu + 1}$ where $t_\sigma t_{\sigma + 1}$ designates the smallest arc with ends t_σ and $t_{\sigma + 1}$ $[4 - 5 - 6]$.

For an arbitrary number $\sigma = 0, 1, 2, ..., N - 1$, we define the linear spline interpolation polynomial $S_1(\varphi; t, \sigma)$ dependent on φ, t and σ which represents the linear approximation of the function density $\varphi(t)$ on the subinterval $[t_\sigma, t_{\sigma + 1}]$ of the curve Γ, given by the following equation

For $t_\sigma \leq t \leq t_{\sigma + 1},$

$$S_1(\varphi; t, \sigma) = \frac{(t_{\sigma + 1} - t)}{(t_{\sigma + 1} - t_\sigma)} \varphi(t_{\sigma + 1}) + \frac{(t - t_\sigma)}{(t_{\sigma + 1} - t_\sigma)} \varphi(t_\sigma).$$

This spline function exists and is unique also called a linear interpolating polynomial.

We define for an arbitrary numbers σ and ν such that $0 \leq \sigma, \nu \leq N - 1$, the function $\beta_{\sigma\nu}(\varphi; t, t_0, \sigma, \nu)$ dependents of φ, t and t_0

$$\beta_{\sigma\nu}(\varphi; t, t_0, \sigma, \nu) = \begin{cases} U(\varphi; t, t_0, \sigma) - V(\varphi; t, t_0, \sigma, \nu) & \text{if } t \neq t_0 \\ 0 & \text{if } t = t_0 \end{cases}$$
The function $U(\varphi; t, t_0, \sigma)$ represents a modified linear interpolation of the function density $\varphi(t)$ on the subinterval $[t_\sigma, t_{\sigma+1}]$ of the curve Γ. Indeed, for $t_\sigma \leq t \leq t_{\sigma+1}$ and $t - t_0 \neq 1$, we put

$$U(\varphi; t, t_0, \sigma) = \left(\frac{t_{\sigma+1} - t}{t_{\sigma+1} - t_\sigma}\right) \varphi(t_{\sigma+1}) \ln(t_{\sigma+1} - t_0) \ln(t - t_0)$$

and the function $V(\varphi; t, t_0, \sigma, \nu)$ is given by

$$V(\varphi; t, t_0, \sigma, \nu) = S_1(\varphi; t_0, \nu) \ln(t_{\sigma+1} - t_0) \ln(t - t_0)$$

where the function φ represents a given function on the curve Γ of the class $H(\mu)$.

Denoting by $\psi_{\sigma, \nu}(\varphi; t, t_0, \sigma, \nu)$ the quadratic approximation of the density $\varphi(t)$ at the point $t \in [t_\sigma, t_{\sigma+1}]$, $t_0 \in [t_\nu, t_{\nu+1}]$ and $0 \leq \sigma, \nu \leq N - 1$ by

$$\psi_{\sigma, \nu}(\varphi; t, t_0, \sigma, \nu) = \varphi(t_0) + \beta_{\sigma, \nu}(\varphi; t, t_0, \sigma, \nu),$$

and replacing the density $\varphi(t)$ by expansion (5) in the weakly singular integral (2)

$$F(t_0) = \frac{1}{\pi i} \int_\Gamma \varphi(t) \ln(t - t_0) dt,$$

and obtain the following approximation noting by $S(\varphi; t)$ given as

$$S(\varphi; t_0) = \frac{1}{\pi i} \int_\Gamma \psi_{\sigma, \nu}(\varphi; t, t_0, \sigma, \nu) \ln(t - t_0) dt$$

$$= \frac{1}{\pi i} \int_\Gamma \beta_{\sigma, \nu}(\varphi; t, t_0, \sigma, \nu) \ln(t - t_0) dt.$$

Main results

Theorem

Let Γ be an oriented smooth contour and let φ be a density function defined on Γ and satisfying the Holder condition $H(\mu)$ then, the
following estimation

\[|F(t_0) - S(\varphi; t_0)| \leq \frac{C \ln N}{N^{\mu}} \quad N > 1 \]

holds, where the constant \(C \) depends only of the contour \(\Gamma \) and the Holder’s constant.

Proof

For any points \(t \in [t_\sigma, t_{\sigma+1}] \) and \(t_0 \in [t_\nu, t_{\nu+1}] \) we have

\[
\varphi(t) - \psi_{s_t}(\varphi; t, t_0, \sigma, \nu) = \varphi(t) - \varphi(t_0) - \left\{ \frac{t_{\sigma+1} - t}{t_{\sigma+1} - t_\sigma} \varphi(t_\sigma) \frac{\ln(t_\sigma - t_0)}{\ln(t - t_0)} - \frac{t_{\sigma+1} - t_\sigma}{t_{\sigma+1} - t_\sigma} \varphi(t_{\sigma+1}) \frac{\ln(t - t_0)}{\ln(t_{\sigma+1} - t_\sigma)} \right. \\
+ \left. \frac{t_{\sigma+1} - t_\sigma}{S_1(\varphi; t_0, \nu) \ln(t_\sigma - t_0)(t_{\sigma+1} - t_\sigma)} \ln(t - t_0)(t_{\sigma+1} - t_\sigma) \right.
\]

(7)

Taking into account the expression (7) we get

\[
\int_{\Gamma} \ln(t - t_0)(\varphi(t) - \psi_{s_t}(\varphi; t, t_0, \sigma, \nu))dt = \sum_{\sigma=0}^{N-1} \int_{t_\sigma t_{\sigma+1}} (\varphi(t) - \varphi(t_0)) \ln(t - t_0) dt \\
- \beta_{s_t}(\varphi; t, t_0, \sigma, \nu) \ln(t - t_0) dt,
\]

hence

\[
F(t_0) - S(\varphi; t_0) = \frac{1}{\pi i} \sum_{\sigma=0}^{N-1} \int_{t_\sigma t_{\sigma+1}} (\varphi(t) - \varphi(t_0)) \ln(t - t_0) dt \\
- \left\{ \frac{t_{\sigma+1} - t}{t_{\sigma+1} - t_\sigma} \varphi(t_\sigma) \frac{\ln(t_\sigma - t_0)}{\ln(t - t_0)} - \frac{t_{\sigma+1} - t_\sigma}{t_{\sigma+1} - t_\sigma} \varphi(t_{\sigma+1}) \frac{\ln(t - t_0)}{\ln(t_{\sigma+1} - t_\sigma)} \right. \\
+ \left. \frac{t_{\sigma+1} - t_\sigma}{S_1(\varphi; t_0, \nu) \ln(t_\sigma - t_0)(t_{\sigma+1} - t_\sigma)} \ln(t - t_0)(t_{\sigma+1} - t_\sigma) \right\} \ln(t - t_0) dt.
\]

Seeing that, the equalities \(t_\sigma - t_0 = 0 \) and \(t_{\sigma+1} - t_0 \) are possible only when \(\sigma = \nu - 1, \nu + 1 \) and \(\nu \). For the two first cases the integral (8) exists when \(t_\sigma \) tends to \(t_0 \) or \(t_{\sigma+1} \) tends to \(t_0 \); the other case, if \(\sigma = \nu \) we can easily seeing that, the function \(\beta_{s_t}(\varphi; t_0, t, \sigma, \sigma) \) contains \((t_\sigma - t_0) \) and \((t_{\sigma+1} - t_0) \) as factor, for the points \(t, t_0 \in [t_\sigma, t_{\sigma+1}] \) we
write
\[\beta_{\sigma}(\varphi; t, t_0, \sigma, \sigma) = U(\varphi; t, t_0, \sigma) - V(\varphi; t, t_0, \sigma, \sigma), \]
hence
\[
\beta_{\sigma}(\varphi; t, t_0, \sigma, \sigma) = \frac{(t_{\sigma+1} - t)}{(t_{\sigma+1} - t_{\sigma})} \ln(t_{\sigma} - t_0) (\varphi(t_{\sigma}) - S_1(\varphi; t_0, \sigma)) \\
+ \frac{(t - t_{\sigma})}{(t_{\sigma+1} - t_{\sigma})} \ln(t_{\sigma+1} - t_0) (\varphi(t_{\sigma+1}) - S_1(\varphi; t_0, \sigma)).
\]
In other words, we write
\[
\beta_{\sigma}(\varphi; t, t_0, \sigma, \sigma) = \frac{1}{\ln(t - t_0)} Q(\varphi; t, t_0, \sigma, \sigma),
\]
where the expression \(Q(\varphi; t, t_0, \sigma, \sigma) \) is given by
\[
Q(\varphi; t, t_0, \sigma, \sigma) = \frac{(t_{\sigma+1} - t)}{(t_{\sigma+1} - t_{\sigma})} \ln(t_{\sigma} - t_0) (\varphi(t_{\sigma}) - S_1(\varphi; t_0, \sigma)) \\
+ \frac{(t - t_{\sigma})}{(t_{\sigma+1} - t_{\sigma})} \ln(t_{\sigma+1} - t_0) (\varphi(t_{\sigma+1}) - S_1(\varphi; t_0, \sigma)),
\]
with
\[
\varphi(t_{\sigma}) - S_1(\varphi; t_0, \sigma) = \frac{(t_0 - t_{\sigma})}{(t_{\sigma+1} - t_{\sigma})} (\varphi(t_{\sigma}) - \varphi(t_{\sigma+1})),
\]
and
\[
\varphi(t_{\sigma+1}) - S_1(\varphi; t_0, \sigma) = \frac{(t_{\sigma+1} - t_0)}{(t_{\sigma+1} - t_{\sigma})} (\varphi(t_{\sigma+1}) - \varphi(t_{\sigma})).
\]
Passing now to the estimation of the expression (8).
For \(t \in [t_\sigma, t_{\sigma+1}] \) and \(t_0 \in [t_\nu, t_{\nu+1}] \) with the conditions \(\sigma \neq \nu, \nu + 1 \)
and \(\nu \) we have
\[
\frac{1}{\pi^2} \sum_{\sigma=0}^{N-1} \int_{t_\sigma t_{\sigma+1}} \left(\varphi(t) - \varphi(t_0) \right) \ln(t - t_0) \\
- \frac{t_{\sigma+1} - t}{t_{\sigma+1} - t_{\sigma}} \varphi(t_{\sigma}) \ln(t_{\sigma} - t_0) \\
+ \frac{t - t_{\sigma}}{t_{\sigma+1} - t_{\sigma}} \varphi(t_{\sigma+1}) \ln(t_{\sigma+1} - t_0) \\
- \frac{S_1(\varphi; t_0, \nu) \ln(t_0 - t_{\sigma})}{\ln(t - t_0)(t_{\sigma+1} - t_{\sigma})} \\
- \frac{S_1(\varphi; t_0, \nu) \ln(t_{\sigma+1} - t_0) (t_{\sigma+1} - t_{\sigma})}{\ln(t - t_0)(t_{\sigma+1} - t_{\sigma})} \right) \ln(t - t_0) dt = O\left(\frac{\ln N}{N^\alpha} \right).
\]
Indeed, it is clear that
\[
\max_{t_0 \in [t_\sigma, t_{\sigma+1}]} \left| \frac{1}{\pi i} \sum_{\sigma=0}^{N-1} \int_{t_\sigma}^{t_{\sigma+1}} (\varphi(t) - \varphi(t_0)) \ln(t - t_0) \, dt \right| = O\left(\frac{\ln N}{N^\nu}\right)
\]

and also we estimate the expression
\[
\left| \frac{1}{\pi i} \sum_{\sigma=0}^{N-1} \int_{t_\sigma}^{t_{\sigma+1}} \frac{t_{\sigma+1} - t}{t_{\sigma+1} - t_\sigma} \frac{\varphi(t_{\sigma+1})}{\ln(t_{\sigma+1})} \ln(t - t_0) - \varphi(t_\sigma) \frac{\ln(t_\sigma)}{\ln(t - t_0)} - \frac{t - t_\sigma}{t_{\sigma+1} - t_\sigma} \varphi(t_{\sigma+1}) \ln(t_{\sigma+1} - t_0)\right|
\]
\[
\approx \left| \frac{1}{\pi i} \sum_{\sigma=0}^{N-1} \int_{t_\sigma}^{t_{\sigma+1}} \frac{\varphi(t) - \varphi(t_\sigma)}{t - t_\sigma} + \frac{\varphi(t_{\sigma+1}) - \varphi(t_\sigma)}{t_{\sigma+1} - t_\sigma} \, dt \right| = O\left(\frac{\ln N}{N^\nu}\right).
\]

Naturally, the estimation given above is obtained by using the density \(\varphi\), as an element of the Holder space \(H(\mu)[2]\), and the following natural estimation
\[
\left| \frac{\ln(t_\sigma)}{\ln(t - t_0)} \right| \approx \left| \frac{\ln(t_{\sigma+1} - t_\sigma)}{\ln(t - t_0)} \right| = O(1).
\]

Further, for the cases where \(\sigma = \nu - 1, \nu + 1\) and \(\nu\), using the relation (9) and the smoothness of \(\Gamma\), we obtain
\[
\left| \int_{t_\nu}^{t_{\nu+1}} (\varphi(t) - \varphi(t_0)) \ln(t - t_0) \, dt \right| \leq A \int_{s_0}^{s_{\nu+1}} |s - s_0|^\mu |\ln(s - s_0)| \, ds
\]
\[
= O\left(\frac{\ln N}{N^{\nu+1}}\right)
\]

Numerical experiments

Using our approximation, we apply the algorithms to singular integrals and we present results concerning the accuracy of the calculations, in this numerical experiments each table I represents the exact weakly singular integral and \(\tilde{I}\) corresponds to the approximate calculation produced by our approximation at points values interpolation.

Example 1

Consider the weakly singular integral,
\[
I = F(t_0) = \int_{\Gamma} \varphi(t) \ln(t - t_0) \, dt,
\]
where the curve Γ designate the unit circle and the function density φ is given by the following expression

$$\varphi(t) = -\frac{1}{t^2}.$$

<table>
<thead>
<tr>
<th>N</th>
<th>$| I - \tilde{I} |_1$</th>
<th>$| I - \tilde{I} |_2$</th>
<th>$| I - \tilde{I} |_\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.7174414E-02</td>
<td>3.5285469E-02</td>
<td>2.9367447E-02</td>
</tr>
<tr>
<td>30</td>
<td>5.5649281E-03</td>
<td>2.9125938E-03</td>
<td>1.8216968E-03</td>
</tr>
<tr>
<td>40</td>
<td>1.4109910E-03</td>
<td>7.3831965E-04</td>
<td>5.1295757E-04</td>
</tr>
</tbody>
</table>

Example 2

Consider the weakly singular integral,

$$I = F(t_0) = \int_\Gamma \varphi(t) \ln(t - t_0) dt,$$

where the curve Γ designate the unit circle and the function density φ is given by the following expression

$$\varphi(t) = \frac{2}{t^3}.$$

<table>
<thead>
<tr>
<th>N</th>
<th>$| I - \tilde{I} |_1$</th>
<th>$| I - \tilde{I} |_2$</th>
<th>$| I - \tilde{I} |_\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.5601690E-01</td>
<td>9.2777811E-02</td>
<td>6.5414310E-02</td>
</tr>
<tr>
<td>30</td>
<td>1.5781343E-02</td>
<td>9.7699165E-03</td>
<td>6.8665147E-03</td>
</tr>
<tr>
<td>40</td>
<td>2.1157265E-03</td>
<td>1.1530236E-03</td>
<td>7.7348948E-04</td>
</tr>
</tbody>
</table>

Note Many examples confirm the efficiency of this approximation.
BIBLIOGRAPHY

Address. Prof. Dr. Mostefa NADIR
Laboratory of Pure and Applied Mathematics
and
Laboratory of Signals Analysis and Systems
University of Msila
28000 ALGERIA

E-mail. mostefanadir@yahoo.fr