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kmax
(0) j r Qmin Qa 

30 3 2 6.93893×10-9 18.6674 
30 3 3 8.46827×10-6 1.18102 
35 4 4 3.44103×10-10 0.000228873 

 
For critical examples we could start with a higher kmax, j and r. The solution of the first step    
(with j = 3 and r = 2) is not bad, the big Qa of 18.6674 results form a big residual value at one 
point (t = -59/60).  
 
Here are the graphs of y4 and y, where we see a good approximation, too. 
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Here is the graph of y4 - y: 
 

-1.0 -0.5 0.5 1.0

-1. μ 10-8

-5. μ 10-9

5. μ 10-9

 
 

 
 
 
 
 
 
 
 
 
 
 

Journal of Approximation Theory and Applied Mathematics, 2015 Vol. 5



10 
 

Example III 
 
We apply the algorithm on a second order ODE with boundary conditions: 
 
y'' = (-tÿy' - m◊p 2ÿcos(p t) - p t sin(p t)) / m  with m = 1/10 and with y(-1) = -2, y(1) = 0, the 
approximation interval is I = [-1, 1]. 
 
 
We called the module for the algorithm with: 
 
WCollocationS2Alg[2 Cos[ t]+10  t Sin[ t]+10 t y[t]+y[t],{-1,1},{-2, 
0},-1.,1.,15,1,2,2] 
 
Here is the graph of  h - y (h is the NDSolve solution): 
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Here is the graph of  h: 
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Now we see the iteration-protocol: 
 

kmax
(0) j r Qmin Qa 

15  1 2 5.8001×10-13 1.85559×10-7 
 
For critical examples we could start with a higher kmax, j and r. 
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Here are the graphs of y1 and y (we see no differences): 
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Here is the graph of y1 - y: 
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At last we see graphically the relation between a und Qa/a in this example: 
 

 

 
When we set m = 1/100, then NDSolve get problems: 
 
NDSolve::bvluc: The equations derived from the boundary conditions are numerically 
ill-conditioned. The boundary conditions may not be sufficient to uniquely define a 
solution. The computed solution may match the boundary conditions poorly. à 
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lnQaa
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NDSolve::berr: There are significant errors _{0.,-454021.}_ in the boundary value 
residuals. Returning the best solution found. à 

 
Here we get a very bad approximation: 
h - y (h is the NDSolve solution): 
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The algorithm has no problems: 
 
WCollocationS2Alg[2 Cos[ t]+100  t Sin[ t]+100 t y[t]+y[t],{-1,1},{-2, 
0},-1.,1.,15,1,2,2] 
 
The graphs of y4 and y: 
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The graphs of y4 - y: 
 

-1.0 -0.5 0.5 1.0

1. μ 10-10

2. μ 10-10

3. μ 10-10

4. μ 10-10

 

Journal of Approximation Theory and Applied Mathematics, 2015 Vol. 5



13 
 

 
At last the iteration protocol: 
 

kmax
(0) j r Qmin Qa 

15  1 2 1.44579 319690. 
20 1 2 1.97176 258.584 
25 2 3 1.66245 195.992 
30 3 4 0.00284779 5.50948 
35 4 5 4.75163×10-14 1.06944×10-10 
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Example IV 

 
In this example we will see, that the maximum number of kmax in the module (the maximum 
value of kmax was set to 45) should be larger in problems, which needs a large j. We apply 
the algorithm on a second order ODE with boundary conditions: 
 
y'' = (-4t y' – 2y)/(m +t2)   with m = 1/50 and with y(-1) = 1/(1 + m) , y(1) = 1/(1 + m), the 
approximation interval is I = [-1, 1]. 
 
We called the module for the algorithm with: 
 
WCollocationS2Alg[-(-2y[t]- 4t*y[t])/(1/50+t2)+y[t],{-1,1},{10/11,10/11},  
-1.,1.,30,5,3,2] 
 
Mathematica NDSolve has no problems:  
 
Here is the graph of  h - y (h is the NDSolve solution): 
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Here is the graph of  h: 
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With the used starting values the algorithm stops after the maximum number of steps has been 
made and the warning came that the solution does not satisfy the convergence criteria Qmin § 
e1 and Qa § e2 . So we know that the solution is not usable. 
 
Now we see the iteration-protocol: 
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kmax

(0) j r Qmin Qa 
30  5 3 1.96059 1.96059
35 5 3 0.96076 22.8715
40 6 4 1.96059 1.96059
45 7 5 1.96059 1.9606
45 8 6 1.96059 1.96115
45 9 7 1.96059 1.96099
45 10 8 1.96059 2.49262

 
The module prints:  Warning: Qmin or Qa is bigger than the tolerance! 
 
We see in the iteration protocol, that the module has a maximum number of kmax. For critical 
problems, where we need a bigger j,  the maximum number of kmax should be set to a higher 
value than 45 in WCollocationS2Alg. With  kmax

(0) less than 2j the method cannot get a 
solution (with a small Qmin, because Qmin is in that case ¥ y(0)2 + y(1)2)  with the Shannon 
 with that boundary conditions, because at tend = 1 we get the boundary condition 
 

)(y)k(c)(c:)(y
!

j/j
k

kk
kk,j

k

kk
kj

max

min

max

min

112211 2  


  

 
and  (m) = 0 for integer m ∫ 0 and  (1) = 1. So if kmax  is less than 2j the boundary condition 
cannot be fulfilled if y(1) ∫ 0. Because if y(-1) ∫ 0 we get the same for kmin. So with that 
boundary conditions we get kmin § -2j and kmax ¥ 2j. Otherwise )(y j 1  = 0. With integer 

values of the boundaries t0 and tend  general kmax should be greater or equal 2jtend. Because of 
kmin should be less or equal 2jt0, in the module kmax

(0) should be greater or equal (only if the 
expression is integer) (2jtend - 2jt0)/2, because in the module kmax

(0) is positive (the module 
shifts automatically the summation area, kmax = kmax

(0) + k0 and kmin = -kmax
(0) + k0).  

 
When set kmaxmax = 100 an apply the method with 
 
WCollocationS2Alg[-(-2y[t]- 4t*y[t])/(1/50+t2)+y[t],{-1,1},{10/11,10/11},  
-1.,1.,80,6,8,2] 
 
then the algorithm stops directly with kmax = 80, j = 6, r = 8,  Qmin =  1.88584×10-12 and          
Qa =  9.84522×10-10.   Here are the graphs of y6 - y: 
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A direct approximation makes no problems, too. For example, with 
 
WCollocationS2Alg[y[t]-fe[t],-1,50/51,-1.,1.,25,2,4,2] 
Fe[t_]:=50/(1+50t2) 
 
the algorithm stops with kmax = 45, j = 5, r = 7,  Qmin = 5.83423×10-10 and Qa = 4.52406×10-9 . 
 
Here are the graphs of y5 - y: 
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The difference between the second derivations is relative large (graph of  y5'' - y''): 
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Here we get:  





m

i
iij ))t(y)t(y(

0

2  = 5.83423×10-10 

 

with               
m

tt
h end 0
      with  m = rÿ|kmax

(0)|  = 45ÿ7, t0 = -1 and tend = 1. 

 
The derivation of the second order derivatives is much larger: 
 





m

i
iij ))t(''y)t(''y(

1

2  = 8308.59 

 
The biggest difference we get at the beginning and at the end of the approximation interval 
with 3970.8 and 4307.34. 
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Comparing the L2 approximation with the direct approximation on the interval [-1,1]: 
We can not apply the information about the L2(R) approximation jy~  from y on                                     

 
                                                      

  
j

maxminmin

S:

k,...,k,kkk,j }{span



 1  Õ Vj 

 
to get the right kmin and kmax for the algorithm, because the L2(R) approximation may need a 
lot bigger kmax than the direct approximation through (4) on the interval [-1, 1] (to get nearly 
the same quality of approximation), like in our example, where the decay of the coefficients 

kc~  is very poor.  

 
For the  L2(R) approximation the coefficients will be calculated as usual with orthogonal bases 
(we assume for easier notation, that the scaling function and y is real valued):    
 

                                   kc~
)R(Lk,j,y

2
   =  

R

k,j dt)t()t(y   

 
And so we get the orthogonal projection from y on Sj: 
 

)t(c~:)t(y~ k,j

k

kk
kj

max

min

 


 

 

Generally  
   ILjILj yŷyy~

22
  with I Õ R. Here jy~ is the best approximation on R, 

calculated through  
 

 
   RLjRLj yy~yymin

22
  

 
and jŷ  is the best approximation on I, calculated through 

 

(3)   
   ILjILj yŷyymin

22
  . 

 
The reason for that is because jy~  is the best approximation according to the L2(R) norm on R 

but jŷ  is the best approximation from y only on the interval I as a part of R. The direct 

approximation is the numerical solution of the minimum problem (3) above, so jy  is the 

numerical approximation of jŷ  or the solution of (4). Here - for easier notation - we named  

the solution of the minimum problems the same as the unknown functions. 
 
Theoretically we would get the solution of the continuous minimum problem (3) through the 
following considerations: 
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We calculate instead of (3) the orthogonal projection of a function y


 on Sj. The function y


 is 
on I  identical to y and on R \ I identically to our function yj of Sj as a part of Vj. So 

IRI yyy \  (where Iy vanishes on R\I and IRy \ vanishes on I): 

)t(c)t()t(y)t()t(y k,j

k

kk
kIRI

max

min

 


\11


 with indicator function 1. 

 
So we approximate y only on I .Outside I the approximation function has no restricts. An 
other and a worse approximation we would get through the orthogonal projection from 

yI 1 on Vj. The reason is that we would cut the function y and this would lead generally to a 
bad decay behavior in the Fourier space, see [19].  
 
Here we get the coefficients ck through: 
 





max

min

k

kk
)IR(Lk,jk,ll)I(Lk,j)IR(Lk,jj)I(Lk,j)R(Lk,jk ,c,y,y,y,yc

\\ 22222
  

 

For I = R we would get the best approximation on R through 
)R(Lk,j,y

2
 . { k,j }k  is general 

no orthogonal system on L2(R \ I) (only if the support of  k,j  is in R \ I). So we get: 

 

)I(Lk,j

k

kk
)IR(Lk,jk,llk ,y,cc

max

min

22 \
  



 

 

)I(Lk,j

k

kk
)IR(Lk,jk,llk,ll ,y,cc
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min

22 \
 



 

 
 

)I(Lk,j

k

kk
)IR(Lk,jk,ll)R(Lk,jk,ll ,y,c,c

max

min

222 \
 



 

 


k

max

min

k,l u:

)I(Lk,j

k

kk
a:

)I(Lk,jk,ll ,y,c






 22
    , for l = kmin, … , kmax    (5) 

 
 
That is the normal equation for the vector c: Ac = u and if we calculate c through this 
equation we get the approximation error of (3): 
 

       Accyyŷyymin T

ILILjILj  2
222

   (6) 

   
The approximation error of the global jŷ  approximation on I is: 

 

 ILj yy~
2

 =    uc~c~Ac~y TT

IL
2

2
2    with kc~

)R(Lk,j,y
2

  
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(6) we get through (which is general for every vector c right): 
 

 
    

   
 222

2222
2
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with 
 ILjy,y

2
 =   

 
 ILl,j

k

kl
k

IL

l,j

k

kl
k ,ycc,y

max

min

max

min

2

2

  


 = cTÿu        and 

 
  

2

2 ILjy
 

 
Acc,ccc,c T

ILk,jl,j

k

kk
kl

k

klIL

k,j

k

kk
kk,j

k

kl
l

max

min

max

min

max

min

max

min

 


2

2

  

 
So: 

 
     Accucyyy TT

ILILj  2
22

22
 

 
For the approximation jŷ  (where we get c through Ac = u) we get equation (6). 

 
With a special scalar product Axx:y,x T

A
   and the induced norm (with positive definite 

A) 
AA

y,xx   we get: 

 

 
 2

2 ILj yy~   - 
 

 2
2 ILj yŷ   = uc~c~Ac~Acc TTT 2  = Acc~c~Ac~Acc TTT 2  

                                                  = 
2

2
AAAA

cc~c~,cc~,c~c,c   

 
 
For example: 
The orthogonal projection of y on S6 or V6 is very near to y, because the differences of the      
L2(R) norm the ||Y|| - ||Yj|| is very small.  
 
With the direct approximation through  
 

(4)                                   



m

i
iij ))t(y)t('y()c(Qmin

0

2  

 
We set kmax = 80 and  j = 6 (r = 8) and start the minimization: 
 
fe[t_]:=  50/(1+50t2) 
WCollocationS2Alg[y[t]-fe[t],-1,fe[-1]//N,-1.,1.,80,6,8,2] 
 
Here the algorithm stops directly with kmax = 80, j = 6, r = 8 and a very small                        
Qmin =  6.98752×10-22  and Q2 =  4.99871×10-21. We started with bigger parameters to get less 
steps. The difference of the orthogonal projection jy~  from y on Vj and y (with kmax = 80) has 

the following graph:  

Journal of Approximation Theory and Applied Mathematics, 2015 Vol. 5



20 
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Here we get:  
 





m

i
ii ))t(y)t(y~(

0

2
6  =  0.00131592  with  

m

tt
h end 0
      with  m = rÿ|kmax

(0)|  = 80ÿ8. 

 
If we set kmax = 1000 we get with the same ti the following sum of squares 
 

   



m

i
ii ))t(y)t(y~(

0

2
6  =  7.42953×10-13  

 
which is small but even much bigger than the sum of squares with kmax = 80 and the direct 
approximation y6: 





m

i
ii ))t(y)t(y(

0

2
6  = 6.98752×10-22 

 
Here are the graphs of y6 – y (kmax = 80): 
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Finally here are some graphs of yj – y for selected combinations of j, kmax and r. Here we can 
see, that not only Qmin but Q2 must be small, too,. That is what the algorithm does. With a too 
small r we get a big Q2. In some cases Q2 can be large because of big deviations at the edge of 
the approximation interval. Q2 was theoretically studied in [16]. In that example we got in 
many simulations the first good approximations for a minimal value for j of 6 and for kmax the 
minimal value have been 70.  
 
For j = 6, kmax = 72, and r = 2 we got a Qmin = 1.82438×10-13 and Q2 = 9.04114×107: 
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Here Q2  was too big and so we got a bad approximation. The following examples have 
decreasing values of Q2 and the approximation will get successively better. 
 
For j = 6, kmax = 72, and r = 3 we got a Qmin = 3.31586×10-12  and Q2 = 5.98751×10-6: 
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For j = 6, kmax = 74, and r = 3 we got a Qmin = 3.35466×10-12 and Q2 = 3.62539×10-7: 
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For j = 6, kmax = 74, and r = 5 we got a Qmin = 4.74696×10-12and Q2 = 7.57142×10-9: 
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For j = 6, kmax = 74, and r = 8 we got a Qmin = 7.71771×10-12 and Q2 = 5.44366×10-11: 
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Here we can see how with decreasing values of Q2  and with Qmin in the same magnitude the 
approximation error decreases.  
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Example V 
 
We apply the algorithm on a second order ODE with boundary conditions: 
 
y'' = (y – (m◊p 2 +1)ÿcos(p t)) / m  with m = 1/100 and with y(-1) = -1, y(1) = -1, the 
approximation interval is I = [-1, 1]. 

 
We called the module for the algorithm with: 
 
WCollocationS2Alg[-100(-(1+2/100) Cos[ t]+y[t])+y[t],{-1,1},{-1,-1},     
-1.,1.,15,1,2,2] 
 
Mathematica NDSolve has problems:  
NDSolve::bvluc : 
The equations derived from the boundary conditions are numerically ill-conditioned. 
The boundary conditions may not be sufficient to uniquely define a solution. The 
computed solution may match the boundary conditions poorly.  
NDSolve::berr: There are significant errors _{0.,-1.76873×10-7}_ in the boundary 
value residuals. Returning the best solution found. à 

 
Here is the graph of  h - y (h is the NDSolve solution), were we can see, that the numerical 
solution of NDSolve has big deviations: 
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Here is the graph of  h: 
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Now we see the iteration-protocol: 
 

kmax
(0) j r Qmin Qa 

15  1 2 6.092×10-27 1.08892×10-22 
 
Here are the graphs of y1 and y (we see no differences): 
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Here is the graph of y1 - y: 
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Now we see graphically the relation between a und Qa/a in this example: 
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Even with m = 1/1000 we get after one step a very good approximation: 
 
The algorithm stops directly with a small kmax = 15, j = 1, r = 2,  Qmin =  1.0731×10-24 and          
Qa =  1.5481×10-21. 
 
Here is the graph of y1 - y: 
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Here is the graph of  h - y (h is the NDSolve solution), were we can see, that the numerical 
solution of NDSolve has very big deviations: 
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Example VI 
 
We apply the algorithm on a second order ODE with boundary conditions: 
 
y'' = (y + y2 – e -2t / sqrt(m))/m   with m = 1/100 and with y(0) = 1, y(1) = e-1/sqrt(m), the 
approximation interval is I = [0, 1]. 
 
 
We called the module for the algorithm with: 
 
WCollocationS2Alg[-100 (--20t+y[t]+y[t]2) + y[t], {0,1}, {1,1/10},0.,1., 
15,1,2,2] 
 
Mathematica NDSolve has problems:  
NDSolve::ndsz: At _t_ == _0.9415179282009`_, step size is effectively zero; 
singularity or stiff system suspected. à 
General::stop: Further output of _NDSolve::ndsz_ will be suppressed during this 
calculation. à Divide::infy: Infinite expression _-(2.07326×10-289/0.)_ encountered.  

 
Mathematica automatically quits the kernel. The algorithm has no problems. 
 
 
Now we see the iteration-protocol: 
 

kmax
(0) J r Qmin Qa 

15  1 2 8.24021×10-14 7.66528×10-11 
 
 
For critical examples we could start with a higher kmax, j and r.  
 
Here are the graphs of y4 and y (we see no differences): 
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Here is the graph of y4 - y: 
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At last we see graphically the relation between a und Qa/a in this example: 
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