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Abstract 

 

In this paper, we present a numerical method called the Variation iteration Adomian 

decomposition method (VIADM) for solving nonlinear partial differential equations (PDEs). 

The method modifies the traditional formulation of the variation iteration decomposition 

method (VIDM) such that it converges more rapidly to the analytic solution. Also, the present 

method is explicit as it requires no special treatment of linearization, perturbation or 

discretization. Two examples are considered for experimentation. The resulting numerical 

evidences show that the present method is effective, efficient and reliable as compared with 

VIDM and homotopy perturbation method (HPM) available in the literature. 
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 Introduction 

 

Nonlinear partial differential equations are not new in the field of mathematics as it serves as 

a tool in the stimulation of real life situations. The solution to this class of equations is not 

easy to achieve. Hence, a lot of researches have been done by various researchers to solve 

this class of equations. Moreover, a lot of research is still ongoing with the sole aim of 

designing more effective and efficient mathematical algorithms for solving this class of 

equations. Known conventional analytic methods are often insufficient in handling this class 

of problems. To this effect, numerical methods have become relevant in solving this class of 

equations. Some popular numerical methods available include the Adomian decomposition 

method [1-4], the homotopy perturbation method [5-7], the variation iteration method [8-9], 

etc. In recent times, new numerical methods has also emerged, which include, the Elzaki 

transform decomposition method [10], the Adomian decomposition method coupled with 

Sumudu transform method [11], the Adomian decomposition method coupled with Laplace 

transform method [12], the variation iteration method coupled with Sumudu transform 

method [13], etc. 

 

The basic motivation behind the present study is the development of a new numerical method 

called the variation iteration Adomian decomposition method (VIADM) for solving nonlinear 

partial differential equations. The method modifies the traditional formulation of the variation 

iteration decomposition method (VIDM) such that it converges more rapidly to the analytic 

solution. In the case of variation iteration decomposition method (VIDM), the components 

𝑢𝑛 𝑥, 𝑡 , 𝑛 ≥ 0, are computed using the variation iteration method (VIM), the nonlinear term 

is expressed as infinite partial sum of Adomian polynomials substituted into the correction 

functional. Hence, the approximate solution is estimated for every   𝑛 ≥ 0 or at a definite   𝑛. 
In the variation iteration Adomian decomposition method (VIADM), the linear and nonlinear 
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terms are expressed as an infinite partial sum of the components 𝑢𝑛 𝑥, 𝑡 , 𝑛 ≥ 0, and 

Adomian polynomials, respectively. 

 

The VIADM is explicit; it requires no special treatment of linearization, perturbation or 

discretization. The rate of convergence is far superior to the traditional variation iteration 

decomposition method (VIDM). We consider some numerical examples to show the rate of 

convergence of the VIADM as compared with VIDM and analytic solution available in the 

literature. 

 

Variation Iteration Method 

 

In this section, we give a brief discussion of the general concept of the variation iteration 

method as applied to linear and nonlinear differential equations.  

Let consider the general differential of the form 
 

(1)      𝐿𝑢 𝑥, 𝑡 + 𝑁𝑢 𝑥, 𝑡 = 𝑔(𝑥, 𝑡),        

              
 

with prescribed auxiliary conditions, where 𝑢 𝑥, 𝑡  is unknown function, 𝐿 is a linear 

operator, 𝑁𝑢 is a nonlinear operator and  𝑔 𝑥, 𝑡  is the source term. By the variation iteration 

method (VIM), we construct a correction functional for (1) as follows:  
 

(2)  𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  𝜆(𝑠)(
𝑥

0
𝐿𝑢𝑛 𝑥, 𝑠 + 𝑁𝑢 𝑛 𝑥, 𝑠 − 𝑔 𝑥, 𝑠 )𝑑𝑠,    𝑛 ≥ 0  

       

where 𝜆(𝑠) is a Lagrange multiplier which can be obtained optimally via variational theory 

and 𝛿𝑢 𝑛 = 0 is a restriction. For more on VIM, see [8-9] 
 

 The Adomian Decomposition Method (ADM) 

 

In this section, we consider the Adomian decomposition method explicitly. 

Now, we consider the standard operator [1-4]  

 

(3)    𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),     

           

with prescribed auxiliary conditions,  𝑢(𝑥, 𝑡), an unknown function, 𝐿 is the highest power 

derivative which is easily invertible, 𝑁𝑢(𝑥, 𝑡) is the nonlinear term, 𝑅𝑢(𝑥, 𝑡) is a linear 

operation of order less than 𝐿, and 𝑔(𝑥, 𝑡) is the source term.  

Applying the inverse operator 𝐿−1 to both sides of equation (3), we obtain 
 

(4)    𝑢(𝑥, 𝑡) = 𝐿−1 𝑔 𝑥, 𝑡  − 𝐿−1 𝑅𝑢 𝑥, 𝑡  − 𝐿−1(𝑁(𝑥, 𝑡)).      

         

The Adomian decomposition method gives the solution as 

 

(5)     𝑢(𝑥, 𝑡) =  𝑢𝑛(𝑥, 𝑡)∞
𝑛=0  .        

           

The Adomian decomposition method uniquely defined the nonlinear term, 𝑁𝑢(𝑥, 𝑡) as  

  

(6)     𝑁𝑢(𝑥, 𝑡) =  𝐴𝑛
∞
𝑛=0  ,       

          

where 𝐴𝑛  are the Adomian polynomials  which are determined recursively using  
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(7)     𝐴𝑛 =
1

𝑛 !
 
𝑑𝑛

𝑑𝜆𝑛
  𝜆𝑖𝑢𝑖

∞
𝑖=0   

𝜆=0
.      

              

Let 𝑁𝑢 𝑥, 𝑡 = 𝛼 𝑢 𝑥, 𝑡  , then first few Adomian polynomials are arranged as follows 

 

𝐴0 = 𝛼(𝑢0 𝑥, 𝑡 ) 
 

𝐴1 = 𝛼′(𝑢0 𝑥, 𝑡 ) 𝑢1 
 

𝐴2 = 𝛼′(𝑢0 𝑥, 𝑡 ) 𝑢2 +
𝑢1

2

2!
𝛼′′(𝑢0 𝑥, 𝑡 ) 

 

𝐴3 = 𝛼′(𝑢0 𝑥, 𝑡 ) 𝑢3 + 𝑢1 𝑥, 𝑡 𝑢2(𝑥, 𝑡)𝛼′′(𝑢0 𝑥, 𝑡 ) +
𝑢1

3

3!
𝛼′′′(𝑢0 𝑥, 𝑡 ) 

 

⋮ 
 

Hence, an n-component truncated series solution is obtained as 
 

(8)     𝑢𝑛(𝑥, 𝑡) =  𝑢𝑖(𝑥, 𝑡)𝑛
𝑖=0  ,     

            

where 

  

(9)     𝑢0 =  𝐿−1 𝐺 − 𝐿−1 𝑅𝑢 ,      

         

(10)   𝑢𝑛+1 = 𝐿−1 𝐺 − 𝐿−1 𝑅𝑢 − 𝐿−1(𝑁𝑢) ,     

      

where 𝑢0  is the zero component. Hence, an n-component truncated series solution is obtained 

as 

  

𝑢𝑛 𝑥 =  𝑢𝑖

𝑛

𝑖=0

 

 

 Variation Iteration Adomian Decomposition Method 

 

Let the unknown function 𝑢(𝑥, 𝑡) be defined as 

  

𝑢 𝑥, 𝑡 =  𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

 

Then, the decomposition method [1-4] involves finding the components 𝑢𝑛 𝑥, 𝑡  ,𝑛 ≥ 0, via 

the variation iteration method. Hence, the variation iteration decomposition method involves 

replacing the nonlinear term, 𝑁𝑢 𝑥, 𝑡  with  𝐴𝑛
∞
𝑛=0 , where 𝐴𝑛  are the adomian polynomials, 

such that we have the iterative scheme 

 

𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  𝜆(𝑠)(
𝑡

0
𝐿𝑢𝑛 𝑥, 𝑠 +  𝐴𝑛

∞
𝑛=0 − 𝑔 𝑥, 𝑠 )𝑑𝑠, 𝑛 ≥ 0      
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Thereafter, we replace the nonlinear term, 𝑁𝑢(𝑥, 𝑡) with   𝐴𝑛
∞
𝑛=0 , and the linear term with 

 𝑢𝑛
∞
𝑛=0  where 𝑢𝑛  are the components obtained using the variation iteration method (VIM). 

Hence, we obtain the iterative scheme given as  
 

(11) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  𝜆(𝑠)(
𝑡

0
𝐿  𝑢𝑛

∞
𝑛=0  +  𝐴𝑛

∞
𝑛=0 − 𝑔 𝑥, 𝑠 )𝑑𝑠, 𝑛 ≥ 0  

    

Equation (12) is the variation iteration Adomian decomposition scheme. Evidently, it 

converges better than the variation iteration decomposition method as numerical experiments 

reflects in the next section. 

  

Numerical Illustrations 

 

In this section, we implement VIADM to solve nonlinear partial differential equations. The 

method is compared with VIDM and Homotopy perturbation method (HPM) [5] for 

efficiency and convergence. We consider problems that have analytic solutions in order to be 

able to obtain the error estimates and rates of convergence for each method. 

 

Example 5.1:  

 

Consider the nonlinear partial differential equation of second order 
 

(12)    𝑢𝑡𝑡 − 2
𝑥2

𝑡
𝑢𝑢𝑥 = 0, 𝑡 > 1,         

      

with the initial conditions 
 

(13)    𝑢 𝑥, 0 = 0,     𝑢𝑡 𝑥, 0 = 𝑥.     

         

The exact solution of this problem is given by 
 

(14)    𝑢 𝑥, 𝑡 = tan(𝑥𝑡).      

       

By the variation iteration method, we construct a correction functional for (12), 

 

(15) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  𝜆(𝑠)  
𝜕2𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡 2  − 2
𝑠2

𝑡
𝑢𝑛 𝑥, 𝑠 

𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑠
 

𝑡

0
𝑑𝑠, 𝑛 ≥ 0  

   

Taking a variation on both sides of (15), we have 
 

(16) 𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡 + 𝛿  𝜆(𝑠)  
𝜕2𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡 2  − 2
𝑠2

𝑡
𝑢𝑛 𝑥, 𝑠 

𝜕𝑢 𝑛  𝑥 ,𝑠 

𝜕𝑠
 

𝑡

0
𝑑𝑠, 𝑛 ≥ 0 

    

where 
 

𝛿𝑁𝑢 𝑛 𝑥, 𝑠 = 𝑢𝑛 𝑥, 𝑠 
𝜕𝑢 𝑛 𝑥, 𝑠 

𝜕𝑠
= 0.  

 

Hence, equation (16) can be rewritten as  
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(17)  𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡 + 𝛿  𝜆(𝑠)  
𝜕2𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡 2
  

𝑡

0
𝑑𝑠,    𝑛 ≥ 0           

     

By integration by part, we obtain  
 

(18) 𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡 + 𝛿  𝜆(𝑠)
𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡
) 
𝑠=𝑡

− 𝛿 𝜆 𝑠 𝑢𝑛 𝑥, 𝑠  𝑠=𝑡  

            + 𝛿  𝜆′′(𝑠)𝑢𝑛 𝑥, 𝑠 
𝑡

0
𝑑𝑠, 𝑛 ≥ 0         

       

Finding the stationary points in (18) yields 
 

(19)     𝜆 𝑠 = 𝑠 − 𝑡,                 

       

(20)      𝜆 𝑠  𝑠=𝑡 = 𝑠,            

       

(21)     𝜆′′ 𝑠 = 0             
        

Equation (19) is the Lagrange multiplier and equation (20) and (21) can be identified as 

initial conditions. 

Hence, the variation iteration method for (12) can be written as 

 

(22) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡  

    + (𝑠 − 𝑡)  
𝜕2𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡 2  − 2
𝑠2

𝑡
𝑢𝑛 𝑥, 𝑠 

𝜕𝑢 𝑛  𝑥 ,𝑠 

𝜕𝑠
 

𝑡

0
𝑑𝑠, 𝑛 ≥ 0    

   

We have the initial approximation as 𝑢0 𝑥, 𝑠 = 𝑥𝑡.  Hence for 𝑛 ≥ 0, we obtain the 

following approximations from using equation (22) 

 

𝑢1 𝑥, 𝑠 = 𝑥𝑡 +
𝑡6

10
 , 

 

𝑢2 𝑥, 𝑠 = 𝑥𝑡 −
13

10
𝑡6 +

1

60
𝑡10  , 

 

𝑢3 𝑥, 𝑠 = 𝑥𝑡 +
183

10
𝑡6 −

19

20
𝑡10 +

1

360
𝑡14  

 

⋮ 
 

Now applying the variation iteration Adomian decomposition method, we have that 

 

(23) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  (𝑠 − 𝑡)  
𝜕2

𝜕𝑡 2
  𝑢𝑖 𝑥, 𝑠 𝑛

𝑖=0  − 2
𝑠2

𝑡
  𝐴𝑖 𝑥, 𝑠 𝑛

𝑖=0   
𝑡

0
𝑑𝑠, 𝑛 ≥ 0 

   

Here, the nonlinear term is given by  
 

𝑁𝑢 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 
𝜕𝑢 (𝑥 ,𝑡)

𝜕𝑥
. 

 

Hence, using the Adomian polynomials formulation, we obtain the following, 

𝐴0 = 𝑥𝑡2 
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𝐴1 = 𝑥𝑡 −
13

10
𝑡6 +

1

60
𝑡10  

 

𝐴2 = 𝑥𝑡3 −
13

10
𝑡8 +

2

75
𝑡12 + 𝑥2𝑡2 +

1

5
𝑥𝑡7 

 

𝐴3 = 𝑥𝑡3 −
183

10
𝑡8 +

27

25
𝑡12 +

1

225
𝑡16 + 𝑥2𝑡2 −

6

5
𝑥𝑡7 +

1

60
𝑥𝑡11  

 

⋮ 
 

Solving equation (23) for 𝑛 = 2, we obtain 

 

(24)   𝑢 𝑥, 𝑡 = 𝑥𝑡 −
3

4
𝑡10 −

9

50
𝑡11 +

181

10
𝑡6 +

4

15
𝑡7 +

1

225
𝑡15    

      

Using (24) we compute the approximate solution 𝑢(𝑥, 𝑡) as shown in Table 1. 
 

 

Table 1: Comparison of absolute error obtained by VIADM and  

VIDM using first approximation 

 
𝑥 𝑡 = 0.015 𝑡 = 0.025 

𝐸𝑉𝐼𝐴𝐷𝑀  𝐸𝑉𝐼𝐷𝑀  𝐸𝑉𝐼𝐴𝐷𝑀  𝐸𝑉𝐼𝐷𝑀  
0.10 9.1900e-10 1.1240e-09 7.8700e-10 5.1820e-09 

0.30 3.0169e-08 3.0374e-08 1.3621e-07 1.4060e-07 

0.50 1.4042e-07 1.4063e-07 6.4666e-07 6.5105e-07 

0.70 3.8568e-07 3.8588e-07 1.7823e-06 1.7866e-06 

0.90 8.1997e-07 8.2017e-07 3.7932e-06 3.7976e-06 

 
 

Example 5.2:  

 

Consider the nonlinear partial differential equation of second order 

 

(25)    
𝜕𝑢

𝜕𝑡
−

1

2

𝜕 𝑢2 

𝜕𝑥
− 𝑢 1 − 𝑢 = 0, 0 ≤ 𝑥 ≤ 1, 𝑡 >  0   

     

where 𝑔(𝑥, 𝑡) = 0. The exact solution is  
 

𝑢(𝑥) = 𝑒𝑡−𝑥 . 
 

By the variation iteration method, we construct a correction functional for (25), 
 

(26) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡  

    + 𝜆(𝑠) 
𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡
−

1

2

𝜕 𝑢𝑛
2  𝑥 ,𝑠  

𝜕𝑠
+ 𝑢𝑛

2 𝑥, 𝑠 − 𝑢𝑛(𝑥, 𝑠) 
𝑡

0
𝑑𝑠, 𝑛 ≥ 0  

  

Taking a variation on both sides of (26), we have 

 

(27) 𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡  
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         +𝛿  𝜆(𝑠) 
𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡
−

1

2

𝜕 𝑢𝑛
2  𝑥 ,𝑠  

𝜕𝑠
+ 𝑢𝑛

2 𝑥, 𝑠 − 𝑢𝑛(𝑥, 𝑠) 
𝑡

0
𝑑𝑠,𝑛 ≥ 0   

 

where 

 

𝛿𝑁𝑢  𝑥, 𝑠 =
1

2

𝜕 𝑢𝑛
2 𝑥, 𝑠  

𝜕𝑠
+ 𝑢𝑛

2 𝑥, 𝑠 = 0. 

 

Hence, equation (27) can be rewritten as  

 

(28)   𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡 + 𝛿  𝜆(𝑠)  
𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡
− 𝑢𝑛(𝑥, 𝑠) 

𝑡

0
𝑑𝑠,  𝑛 ≥ 0       

  

By integration by part, we obtain 
 

(29) 𝛿𝑢𝑛+1 𝑥, 𝑡 = 𝛿𝑢𝑛 𝑥, 𝑡 + 𝛿 𝜆(𝑠)𝜕𝑢𝑛 𝑥, 𝑠  𝑠=𝑡 − 𝛿  𝜆′(𝑠)𝑢𝑛(𝑥, 𝑠)
𝑡

0
𝑑𝑠, 𝑛 ≥ 0  

  

Finding the stationary points in (29) yields 

 

(30)     𝜆 𝑠 = −1          

       

(31)      𝜆′ 𝑠  𝑠=𝑡 = 0             

       

Equation (30) is the Lagrange multiplier and equation (31) can be identified as initial 

conditions. 

The correction functional for equation (25) becomes 

 

(32) 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 −   
𝜕𝑢𝑛  𝑥 ,𝑠 

𝜕𝑡
−

1

2

𝜕 𝑢𝑛
2  𝑥 ,𝑠  

𝜕𝑠
+ 𝑢𝑛

2 𝑥, 𝑠 − 𝑢𝑛(𝑥, 𝑠) 
𝑡

0
𝑑𝑠,𝑛 ≥ 0

   

We take initial approximation as  

 

𝑢0(𝑥, 𝑡) = 𝑒−𝑥 . 

 

By the variation iteration Adomian decomposition method, equation (32) can be written as 
 

 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡  

       −  
𝜕

𝜕𝑡
  𝑢𝑛

∞

𝑛=0

 +
1

2

𝜕

𝜕𝑥
  𝐴𝑛

∞

𝑛=0

 − 𝑢𝑛

∞

𝑛=0

+  𝐴𝑛

∞

𝑛=0

 

𝑡

0

𝑑𝑠,   𝑛 ≥ 0 

 

Here, the nonlinear term is given by  

 

𝑁𝑢 𝑥, 𝑡 =
1

2

𝜕 𝑢2 

𝜕𝑥
+ 𝑢2. 

 

Hence, using the Adomian polynomials formulation above, we obtain the following, 
 

𝐴0 =
1

2

𝜕 𝑢0
2 

𝜕𝑥
+ 𝑢0

2, 
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𝐴1 =
𝑑

𝑑𝑥
 

1

2

𝜕 𝑢0
2 

𝜕𝑥
+ 𝑢0

2 𝑢1, 

 

𝐴2 =
𝑑

𝑑𝑥
 

1

2

𝜕 𝑢0
2 

𝜕𝑥
+ 𝑢0

2 𝑢2 + 𝑢1
2, 

 

⋮ 
 

Using the above relations for 𝑛 ≥ 0, we obtain 
 

𝑢1 𝑥, 𝑡 = 𝑒−𝑥 + 𝑒−𝑥𝑡, 
 

𝑢2 𝑥, 𝑡 = 𝑒−𝑥 + 𝑒−𝑥𝑡 +
1

2
𝑒−𝑥𝑡2 , 

 

𝑢2 𝑥, 𝑡 = 𝑒−𝑥 + 𝑒−𝑥𝑡 +
1

2
𝑒−𝑥𝑡2 +

1

6
𝑒−𝑥𝑡3 , 

⋮ 

𝑢 𝑥, 𝑡 = 𝑒−𝑥 + 𝑒−𝑥𝑡 +
1

2
𝑒−𝑥𝑡2 +

1

6
𝑒−𝑥𝑡3 +

1

24
𝑒−𝑥𝑡4 + ⋯ = 𝑒(𝑡−𝑥). 

 

which is same result obtained using HPM [5]. 
 

Conclusion 

 

The variation iteration Adomian decomposition method has been successively implemented 

for resolving nonlinear partial differential equations. In example 5.1, the mode of 

convergence varies with the parameter t as clearly shown in Table 1. While, in example 5.2, 

the solution converges to the exact solution for 𝑛 ≥ 0, which coincides with the same result 

obtained in [5] using HPM. The method is very effective with no requirement for 

linearization or discretization. Hence, the method is favourably recommendation to other 

areas in applied mathematics. All the computations were carried out with the aid of Maple 18 

software.  
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