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Abstract

In this paper we describe the application of a wavelet collocation method on different ODE's.
Here we compare the approximation error of various Wavelets. The Shannon wavelet and the
Meyer wavelet provides very good results. This method can be extended to unstable and stiff
differential equations. In this work we also show how to set the Parameters of the collocation
method and we present a general algorithm for this method.

Introduction

As part of a research project we investigated how to determine the optimal parameters for a
wavelet collocation method. In the classical approach to collocation methods the
approximation function is based on polynomials. These methods are equivalent to implicit
Runge-Kutta method, which are used in stiff problems and boundary value problems. In the
wavelet collocation method the approximation functions are constructed by a wavelet base.

There are a lot of different parameters to be set which brings up the question how useful the
approximation function is if the exact solution is unknown. Here, we performed a series of
simulations in which a criterion was found which theoretical could be used for a estimation.
Using regression analysis, there were significant correlations between this criterion and the
mean square approximation error. The criterion for evaluating the approximation of the herein
described wavelet collocation method was used and theoretically justified by an estimate in
[16] by M. Schuchmann.

In this study, various wavelets were compared, because there are whole families of wavelets,
such as Daubechies wavelets, the Meyer wavelets or the Battle Lemari¢ wavelets available.
One wavelet that does not have compact support, and not even a high order, provided very
good approximations. The approximation functions can even be used to for extrapolations.
This wavelet was the Shannon wavelet, which is infinitely differentiable and, unlike many
other wavelets has a mother wavelet and a scaling function (also called father wavelet) which
can be written in closed form.

We will use an approach in which the trial function is composed of a wavelet basis. Instead of
solving a system of equations and to set the residuals equal to zero at certain points, we
minimize the sum of squared residuals (at the collocation points), so that we are not restricted
in the number of collocation points.

The advantage of the wavelet collocation method is that like other collocation method it also
can be applied to stiff differential equations. Moreover, it can even be used in non-stable
problems (see [15]). As an approximation we not only get points but an approximation
function. Compared to other collocation method, for example, based on polynomials (see [3]),
one can also cover a larger interval with an approximation, i.e. you do not have to use
composite functions for small subintervals. These are the advantages of a wavelet collocation
method as well as using the approximation for extrapolation outside the original
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approximation interval. As a disadvantage, you could argue that if there is a differential
equation for which one needs no boundary value problem methods (i.e. if they are not stiff or
unstable) more computing time may be needed since a minimization problem or a system of
equations must be solved.

There are wavelets which are called interpolating wavelets with special properties. There are a
number of publications on these wavelets. These deal with error estimates and also with the
approximation of the solutions of initial value problems and boundary value problems (for
ordinary and partial differential equations), see [23] and [4], as well as with the sinc
collocation (see [5], [1], [10]) with special support points ("sinc grid points", see [10]). The
scaling function of the Shannon wavelets which we use later are based on the sinc function
and also have interpolating properties (see [18]).

In [9] a quasi-Shannon wavelet is used to approximately solve a boundary value problem
(with second-order ordinary differential equation). The scaling function of the Shannon
wavelets is weighted by a Gaussian function, so that the decay of the scaling function is
improved.

Error estimates are provided for the Shannon wavelet (i.e. a sinc collocation with a
transformation) in [10] and [1]. For interpolating wavelets estimates can be found in [19] and

[6].
The method described here can also be applied to partial differential equations (see [17]). In
addition, the method can also be used for parameter identification. For that an estimate in two
steps was tested by us and M. Schuchmann has developed an error estimate, which was
published by us in [18].
In the wavelet theory a scaling function & is used, which belongs to a MSA (multi scale
analysis). From the MSA we know, that we can construct an orthonormal basis of a closed
subspace V;, where V; belongs to a the sequence of subspaces with the following property:

. YV Vyaly C..CLZ(R),
{&,1(t) }1ez is an orthonormal basis of V; with & (1) = 2742t - k).

We use the following approximation function
kmax
y, (1) = ch ¢, (1), with #eC'(R).
k:kmin

kmax and ki, depend on the approximation interval /%y, f.,q/ (see [7]). r is the order of the ODE.

Now we can approximate the solution of an initial value problem y’ = f(y,#) and y(#)) = yy by
minimization of the following function

i +Hyj(t0)_y0”2

)

n 0() =2, t) = (v, )1

For m = |kyax - kmin] We get an equivalent problem:
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y,'t)=f(y;@)t) fori=1,2,....,mand y,(t,) = y,.

We will use equidistant points or collocation points ¢; with t; = ¢y + i-4 and
5= ! end_tO
m

To detect large residuals in other places as the collocation points, we have a further value used
for comparison with Q,» (here in y; the vector ¢ will be set to the value in the minimum of Q,
see (1)).

R IR

0, :i“yj'(ri)_f(yj(ri)’ri)’

with 7; =ty + i-h/a. m, = a-m with a > [ as an integer. Since the wavelet collocation method
provides a whole approximation function y; and not only points, we can calculate O, without
additional effort. If O, >> O,y (and Qi Was very small) then m (the number of collocation
points) should be increased. When comparing Q,.;,» with Q,, O, should be weighted by //a if
a is large. In the simulations a = 2 proved sufficient.

0O, can additionally be justified by an error estimation of the residuals at theoretically any
number of points. This was derived by M. Schuchmann. In this error estimate a certain value

occurs as a factor. O, represents the Riemann sum for this value i.e. this can be approximated
by Q,. For this we use the following theorem:

Theorem:
Let y "= f(y, t) with y(t)) =y, and let (for ¢ > t))

by - 1050, DI = M(),

@, 9 -0, Yl <Ii@-ly(® - y@|| with ) > 0

and

yi(to) = yo.
With

L(t)= jl(s )ds

follows (for t.,q = ty):

_ Lltog) || ,-L )
Hyf (te”d) y(te”d )H se’ ™ He L ([to o ) HMHLZ([to,tm/])

The proof can be found in [16]. The factor on the right hand side of the inequality can now be
approximated with O, by
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t d_t()
||A4HL2 ([t tenal) ~ \/ﬁ

Analogous we could treat boundary conditions instead of the initial condition. This method
can be even used analogous for PDEs, ODEs of higher order or ODEs, which have the Form

F(y',y,t)=0.
If we have a second Order ODE

F(y",y' . y.t)=0
with boundary conditions

Y(t)) =yo
and

y(tend) = VYend
like in the following example, we minimize

2
5,

0(c)= Y NF v, (13, ()3, e+t =3[+ (bt )= Vo
i=1

Analogous we treat conditions of the form

Y(to) = yo
and
Y'(t)) =y’

Comparing the Orthogonal Projection of y in V;

Now we want to approximate two functions in the following two examples, which are not
quadratic integrable on R.

Example I:

We begin with an approximation of the function y(¢) = ¢” on I = [0, 2]. y is not in L*(R), but
every on / continuous function is in L*(Z) or 1,y (with indicator function /; of 1) is in L*(R). So
we set kmax = -kmin = 20 and we calculate an approximation function by an orthogonal
projection from /;y on V3. Therefore we calculate the coefficients of the approximation
function over a scalar product (compare [v5]):

Cr = <1[0,2]y’¢_/,k> = J.y(t)'¢1,k(t)dt
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With the Shannon wavelet we get a worse approximation (dashed line is thee graph of y). We
consider in the graph only the interval [0.5,1] because of we cut the original function y at the
edges we get worse approximation at the edges.
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Figure 1. Graphs of y; (orthogonal projection form /;y on V3) and y
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Figure 2. Graphs of y - y3

With the Daubechies wavelet of order 8 we get no good approximation, but better
approximation on / = [0; 2], but in the midle of the interval I:
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Figure 3. Graphs of y; (orthogonal projection form /;y on V;) and y, Daubechies wavelet order 8
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Figure 4. Graphs of y - y3;, Daubechies wavelet order 8
But the approximation with the wavelet collocation method can be much better with the
Shannon wavelet, what we see in the following examples in many examples too.
Now we calculate the coefficients ¢, by the minimization of Q (see (1)). We use the initial
value problem y = -y, »(0) = 1 and set even j = 1. We use the collocation points ¢ = i/20 with

i=0,2, ..., 40 and the Shannon wavelet.

Graphically we see no difference between the approximation function y; and y on I:
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Figure 5. Graphs of y, (calculated by min Q) and y

Here is the graph of the difference function y; - y:
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Figure 6. Graph of 'y, - y (y; calculated by min Q) and y
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With the Daubechies wavelet of order 8 (D8) we get the following graph:
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Figure 7. Graph of y, - y (y; calculated by min Q) and y, with D8

Example II: Boundary value problem with a second order differential equation

Consider the following boundary value problem:

FO", V' 0,0 =y"-1/¢-(y—(&-7° +1)cos(r-1)) =0 with y(~1)=0 and y(1) =0, ¢ > 0.
This example was also used in the chapter with the title "comparing different wavelets"

(Sample 8) and was found as test problem 14 on the website of Jeff Cash (Imperial College,
London). If we write the problem as a first order system, with y; = y"and y, =y, then

»n'=1¢ (v, = (¢ 7" +1)cos(z 1))

»n'=y
' 0 1/ - A& 72 )
respectively | 4 R4 N 1/¢- (¢ 7" +1)cos(xm-t) .
y2' 1 O y2 0
-

=4

. : 1
The matrix A has the eigenvalues 1;, = * f .
Thus we see that at small { the solution function is composed of a function with a steep

incline and a sharply decreasing function, which can lead to problems with numerical
methods.

We are looking for an approximation on the interval /= [-1, 1] and set { = 0.01. We minimize

31



Comparing Approximations of a Wavelet Collocation Method of Various Wavelets

O(c)= Z(F(y,”(ti), Y,'(t),y,(t),0)) + (v, (=1)=0)* +(y,(1) - 0)°
with the collocation points #; = i-h (mit i = 1, 2, ...,m, m = rkua), with h = 2/(r k.. and
kmin = ~kmax. We use again k, = 15,20, 25, r=1,2,3and;j=0, 1, 2.

0, 1s defined here in analogy to (5) for this boundary value problem:
0, = Z(F(y,”(Ti),y_,’(fl-),y_i(Ti),Ti))Z +(y;(=1)=0)" +(y;(1)~0)

In the graphs the mean square error mse is again displayed with

100
mse = ﬁZ(y(%/lOO—l)—yj(2i/100—1))2

i=0

We start with the Shannon wavelet. Below are the graphs of the approximations that were
relatively goodwith following triples (j, kmax, m): ( 0, 20, 40), (1, 15, 30), (1, 20, 40) and
(2, 25, 50). It is noticable that here » = 2 i.e. m = 2-kyax = |kmax - kmin|.- Below are the graphs of
i, yandy;-y.
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j= 0 1= 1
ax= 20 knax= 15
Omin= 124528 x1077 Omn= 348745 x 10712
= 9.46466 x 1076 = 224748 %1076
mse= 81759 x 10712 mse = 970093 x 10~
m= 40 m= 30
yiO.£0) yjO.£0)
05 -
~10 0.
-05 —05
Figure 8 Figure 9
j= 1 ] = 2
kmax— 20 kmax— 25

Onin= 460635 x 10712

Omn= 243118 x 107V

= 529743 %1078 = 1.82903 x 10!
mse = 567652 x 10716 mse = 1.24%46 %1071
m= 40 m= 50

.50 0.0
05
- (] _ O,
-05 - _05 1
Figure 8 Figure 9
i= 0 i= I

ax= 20 kmax: 15
Omin=  1.2458 x1077 Omin= 348745 x 107"

= 9.46466 x 1070 = 224748 x107°
mse = 81759 x 10712 mse = 970003 x 10~
m= 40 m= 30

¥ (O£ yjO-£©)
6.x107° 251071

4.x1070

Figure 11
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j= 1 ] = 2
inax= 20 Fmax= 25

min= 466635 x 107" Omn= 243118 x 10777

= 529743 %1078 0= 1.82903 x 10~
mse = 567652 x 10716 mse = 1.24%46 % 10~1?
m= 40 m= 50
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With the points (-ln(Quin), -In(mse)) (with various j, k.. and ) a regression is calculated.
Here again we see a relationship. However, more clearly the relationship is seen in the
regression with the points (-In(Q;), -In(mse)).

Regression with the points (-ln(Quin), -In(mse)):

Estimate SE TStat PValue
6.14361 1.34266 4.57571  0.00011192 , RSquared - 0.923205
X 1.03175 0.0595142 17.3362  1.9112x107%°
Table 1
© .
.on
30 .
s ® o
20
10 g
- L]
of
10 20 30 40
Figure 14

Regression with (-In(Q,), -In(mse)):

Estimate SE TStat PValue
8.12563 0.801252 10.1412 2.41445%10710 , RSquared » 0.967851
x | 1.41116 0.0514383  27.434 3.50593x 10720
Table 2
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-5 5 10 15 20 25
Figure 15

Now for comparison follows a regression of -/n(Q>) to -In(mse) using the Meyer wavelet:

Estimate SE TStat PValue
8.54055 0.747398 11.427 2.03499% 10711, RSquared -» 0.970825

X 1.45183 0.0503363 28.8426  1.04043x10720
Table 3

5 10 15 0 %
Figure 16

The Daubechies wavelet of order 8 as well as the Battle-Lemari¢ wavelet provided no useful
approximations. This could be recognized by a very high Q,.i;, and Q- (see the chapter with the
title "Comparison of different wavelets").

Even the NDSolve function of Mathematica 8 (also Mathematica 9) has problems with this
boundary value problem.

There is a note displayed:
NDSolve::berr: There are significant errors {4.85642x107%°-1.83451x10°) in the
boundary value residuals. Returning the best solution found.

Here is the graph of the solution curve computed by NDSolve. At t = 1 we see major
deviations:
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—05 -

Figure 17

If for example { = 0.001 is set, then the problems get even more severe:

-10 -05 b 05 1.0

—20x1012 —
—40 x1012 —
—-60 x1012 —
—-80 x1012 —

—10x1013 -

_12x101 -
Figure 18

Mathematica displayed following note here:

NDSolve::bvluc: The equations derived from the boundary conditions are numerically ill-conditioned.
The boundary conditions may not be sufficient to uniquely define a solution. The computed solution
may match the boundary conditions poorly.

NDSolve::berr: There are significant errors {-1.10934x107°-4.30118x10"'} in the boundary value
residuals. Returning the best solution found.

With this smaller { the wavelet collocation method has no problems, but it can cause big
deviations between y; and y in the neighbourhood of 7 = -1 and # =1 (i.e. in the vicinity of the
interval limits of the approximation interval /) provided j is too small. This is due to the
relatively large slope of y in this area. For this reason the collocation points # = i1 should
begin with i = 0 , so that the slope at #=-1 is considered in Q.

With a smaller j also relatively large values of O, can occur; even if the whole approximation
(or without the areas at the edge of approximation interval /) is good. This is due to the fact

that d@) = (F(y,"(0),y,'(®),y, (¢),1))> becomes relatively large in the aforementioned
neighbourhood.
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With such types of functions the points 7; on the edge of the approximation area could be left
out, if a good approximation on the inner part of the interval / is needed and this
approximation should be identified with Q..

Now we set { = 0.001 and we minimize Q. Below are the graphs of y; and y and the graph of
yi-yforj=3andr=3:

_] = 3 J = 3
kmax: 25 kmax: 25
)nin= 9.13708 x 1077 Onmin= 9.13708 x 1077
= 910087 x 1076 = 910087 x 1076
nmse= 9.52958 x 10716 nse= 9.52958 x 10716
m= 75 m= 5
yj(0).£0) ¥ O£

4,x1078

—05 +

—4.x10-8

Figure 19 Figure 20

If j is too small there are problems on the edges and O, still relatively large. For example
when j = 1 and ke = 15:

i= I i= I

kimax= 15 kmax: 15
Omin= 0.358577 Qmin = 0.358577

= 161.101 Oh= 161.101
nse = 0.00122875 mse = 0.00122875
m= 30 m= 30

»jO.£0 yjO-£®

—0.0005

—0.0010

-00015 -

—-05 - L
f -00020 -

-00025 ©

Fi 21 -
eure Figure 22

Or when j = 1 and k= 25:
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kmax= 25 Kmax= 25
Omin= 1.99998 Onin= 0.124689
= 1.99998 = 20.7563
mse = 0.0275891 nmse = 0.000128907
m= 25 m= 50
yjO.f® O£
05
| t
-10 5 1
-05 -
“10 L I
Figure 23 Figure 24
] = 1 ] = 1
kinax= 25 Kinax= 25
Omin= 1.99998 Omin= 0.124689
0= 1.99998 = 20.7563
nse= 0.0275891 nmse = 0.0001289%07
m= 25 m= 50
yjO-£(1 yjO-f£)
S0 -05 05 10 o [
t 00010 -
—-0002 - [
0k
,0(»4 L
—0006 -
—0008 -
—0010 L
Figure 25 Figure 26
j= 1 ] = 1
kmax: 25 kmax: 25
Omin= 1.99998 Omin= 0.124689
Or= 1.99998 O= 207563
mse= 0.0275891 mse= 0.000128907
m= 50

-10

Figure 27

d(t)

Figure 28

The Algorithm
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If no further information is available, one can start with j = 1 and m = |kyax - kmin| and
minimize Q. ki, and k4 should be tuned to the approximation interval. Suitable positive real
numbers ¢ and & should be chosen.

If Onin < €, then it is checked wether O, < g applies (with a > 1, for example a = 2). If both
conditions are met, then the iteration is finished.

If Onin < € 1s not met, j is incremented by 1 (if a sufficient number of basis functions &, are
chosen with respect to the approximation interval /).

If Ouin < € 1s met but O, < & not, then m should be increased.

Remark:

1) For the Shannon wavelet j = 1 was sufficient for most simulations. If steep slopes or large
curvatures are present, good approximations where were calculated with j = 2 or j = 3. Here
you can also start with a larger m.

2) Since kyqe and kyin also depend on j (i.e. for bigger j a bigger k. and smaller &, is
needed), with a bigger j automatically a bigger m should be chosen. You could double the
value of m when j rises by 1. This rule could be useful in relation to the Shannon wavelet,
taking into account the sampling frequency of the Shannon theorem.

3) Minimizing Q instead of solving the equation system (2) has several advantages. One can
use more collocation points and the least squares method is used to calculate the parameters
cr, because the differential equation is generally (if y; is not the exact solution) only
approximately fulfilled (but the residuals are very small with good approximations).
Moreover, the equations (2) several examples have been in ill-conditioned.

4) If y has near the beginning big slopes or curvatures as with some stiff differential
equations and only a good approximation in the interior of the interval / is needed, then only
Ti€ [ 1), tena] With T, >ty ([7,, tend] is part of the overall approximation interval I = [fy, fend]) is
sufficient for the calculation of Q,. In this case the summation index in (5) does not start with
i=1(eg.i=a).

5) Although the Shannon wavelet does not have compact support, and no high order, but it
returned in the simulations often significantly better results than other wavelet (even at
relatively small |kuac - kmin|). In addition, it has several advantages for use in an
approximation:

(a) The scaling function (as well as the wavelet) is defined analytically.
(b) The scaling function is many times continuously differentiable (see [11]).
(c) The scaling function is band limited and you can use this with the sampling theorem of

Shannon, and thus "generalize" (see Remarks 1). This gives you information about the choice
of j in Fourier space.
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Comparing different wavelets

Finally we compare the approximation behaviour of different wavelets (Shannon, Daubechies
of order 8, Meyer of order 3 and Battle-Lemarié of order 5). We minimize Q and use the
collocation points #; = i-h (withi =1, 2, ..., m; m = rkya), With h = 2/(r kine) and kiin = ~kinax-
It was kyqe =15, 20,25, r=1,2andj =0, 1, 2 used.

Example 1: y'=-¢ty, y(0)=1,1=1-1, 1]

Example 2: y' = - 26", (0) =1, I =[-2, 2]

Example 3: y' = -y - 2° + sin(2), (0) = 0, I = [0, 4]
Example 4: y' =y - 2t/y, y(0) =1, 1= [0, 4]

Example 5: y" = -y"-257/4y, y(0) =0 and y'(0) =8, I =[0, 4]

Example 6: y"=-100 y, y(0) =0 and y'(0) = 10, 7 =[O0, 4]

Example 7: "= 3/2)°,9(0)=4 and y(1)=1,1=0, 1]

Example 8: y"'=1/¢-(y—(-7* +1)cos(z-1)), y(-1) = y(1) =0, £=0.01, I =[-1, 1].
Example 9: y"= -ty"/», y(-1)=0and y(1) =2, [=[-1, 1], » =0.1

We now compare the mean values /n(Qyin), In(Q>) and In(mse). The mean values were formed
over the logarithmic values.

mean values
Wavelet IN(Quin) In(Q,) In(mse)
Shannon -23.0799222 -12.9773489 -20.0139956
Daubechies -11.1367372 3.67751667 -7.689269
Meyer -26.1509444 -14.1988722 -21.4952933
Battle-Lemarié -10.9775212 4.46392222 -4.58829762
Table 4

mean value In(mse)

Battle-Lemarie

[ Meyer

| Daubechies

| Shannon

Figure 29
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Mean value median std. deviation
ex. | Wavelet In(Quin) (Q) In(mse) |In(Qun) In(Qy) In(mse) |In(Qun) In(Q;) In(mse)
1 | Shannon -45.1416 -34.9871 -43.1020] -59.5881 -32.7114 -40.7852( 20.5402 18.4473 18.4535
Daubechies -22.6407 -8.5528 -19.5461] -18.2668 -10.3142 -19.8111| 15.8459 5.6637  3.5565
Meyer -44.5049 -36.9365 -44.6782| -45.2432 -33.3143 -42.1668 | 24.3334 20.8302 20.6762
Battle-Lemarié | -24.7375 -12.4429 -19.7694| -17.9303 -12.3960 -20.4020| 16.1280 1.8081 1.9071
2 | Shannon -23.3086 -9.4866 -17.4577|-21.3585 -10.0678 -18.2280| 12.5373 6.2265 6.7762
Daubechies -7.6038 49098 -5.9686( -5.5510 3.2476 -6.3710( 6.9106 9.8605 4.7916
Meyer -28.3080 -10.2096 -18.3243]-25.9299 -8.7265 -16.5092| 15.2511 7.5339 8.2264
Battle-Lemarié | -21.9864 -4.1248 -11.4590| -17.3911 -3.5546 -12.0687| 16.0386 4.0742 4.3339
3 | Shannon -17.4368 -7.4721 -13.8434]-16.9744 -7.9037 -13.6704| 8.5688 7.2645 6.8050
Daubechies -9.0168 10.3088 -5.9482| -7.4231 5.1840 1.2556| 6.5367 16.0473 3.2873
Meyer -21.6741  -7.6675 -14.3456|-19.5319 -7.8079 -13.9251| 14.4333 8.5846 7.4738
Battle-Lemarié | -24.3668 -2.5878 -9.5006| -24.0618 -2.4188 -9.6513| 19.0808 3.5698  4.0442
4 | Shannon -24.1532 -13.3252 -8.4140| -23.5640 -12.3671 -5.6234| 16.6732 17.0482 12.6458
Daubechies -17.6935  3.6399 -5.4503]-15.8065 -1.1751 -5.6441| 7.8687 18.0739 4.2219
Meyer -31.5287 -16.8619 -12.3544] -34.2040 -20.4032 -13.4978( 20.9125 13.2374 10.1363
Battle-Lemarié | -20.4299 -4.5728 -4.6614| -13.4767 -6.4869 -4.8664| 17.9377 7.5612 4.2059
5 | Shannon -17.7301  -3.4409 -13.2128]-15.2637  1.7691 -9.2547| 18.3200 13.0490 13.5674
Daubechies -17.7301  3.4409 -13.2128|-15.2637  1.7691 -9.2547| 18.3200 13.0490 13.5674
Meyer -22.7259  -7.0328 -16.9923| -14.1805  1.0138 -8.6092| 20.2726 15.7955 16.1148
Battle-Lemarié¢ | 0.2292 154572 1.0347| 4.1586 15.1660 -1.8023| 14.3101 10.7499 5.7476
6 | Shannon -10.7263  2.5601 -6.1637| -4.9058  7.1443 -0.7929| 15.9524 11.0973 11.4525
Daubechies -18.0931  9.1515 -0.6650| -4.9914  9.0978 -0.6859| 26.1343 4.2960 0.0888
Meyer -12.6006  3.2345 -5.8314| -8.4605 7.2359 -0.8047| 15.8750 8.4701 8.7088
Battle-Lemarié | -1.5164 16.3486  2.1872| 4.6050 17.4862 -0.4954| 17.6942 10.6804 5.3346
7 | Shannon -27.9718 -23.2911 -26.5562 | -30.3089 -26.1877 -33.1029| 16.7338 14.7308 9.3988
Daubechies -5.7594  -1.0330 -13.5146| -6.6196 -1.3947 -15.2089| 2.8753 3.3705 5.5848
Meyer -29.1160 -22.8944 -26.5143| -32.4942 -25.6679 -33.0689| 17.6806 14.6209 9.6894
Battle-Lemarié¢ | 3.2665  8.1615  1.1993| 2.7752  5.0363  1.4432| 1.9827 6.0327 0.7568
8 [ Shannon -17.7370 -11.5636 -24.4437]| -15.6891 -12.7276 -25.8691| 14.2071 10.6355 15.2556
Daubechies 0.6492 59883 -3.0481| 0.6996 4.8684 -29766| 0.2792 5.2747 0.2402
Meyer -18.6732 -11.1286 -24.6974] -19.0103 -12.2142 -26.4521| 14.1214 10.0168 14.7596
Battle-Lemarié | -3.6220 14.8301 -0.2754| 5.7904 14.9184 -0.5609| 22.7281 3.8925 2.0306
9 | Shannon -23.5139 -15.7896 -26.9325]-17.0989 -11.5982 -20.8504| 17.0451 13.2019 16.1509
Daubechies -2.3425  5.2443 -1.8497| 0.0373  4.6431 -1.7107| 11.7608 4.5717 0.8279
Meyer -26.2271 -18.2931 -29.7197| -21.2537 -11.4962 -22.8726| 19.2883 15.7809 18.4942
Battle-Lemarié | -5.6343  9.1062 -0.0500| 1.1396 6.9116 0.2970| 18.4343 6.2239  0.8726
Table 5

What has been described here can be seen in Table 4 and 5 an Figure 29. The Shannon and
the Meyer wavelet gave by far the best results for the nine differential equations. This was
also reflected in other simulations with systems and examples from the reaction kinetics. In
some examples the median over the logarithmic mean square error (/n (mse)) is even positive
for the wavelets of Daubechies and Battle Lemarié.
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